Dave's Short Course on 

Absolute value


An important concept for numbers, either real or complex is that of absolute value. Recall that the absolute value |x| of a real number x is itself, if it's positive or zero, but if x is negative, then its absolute value |x| is its negation –x, that is, the corresponding positive value. For example, |3| = 3, but |–4| = 4. The absolute value function strips a real number of its sign. 
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For a complex number z = x + yi, we define the absolute value |z| as being the distance from z to 0 in the complex plane C. This will extend the definition of absolute value for real numbers, since the absolute value |x| of a real number x can be interpreted as the distance from x to 0 on the real number line. 

We can find the distance |z| by using the Pythagorean theorem. Consider the right triangle with one vertex at 0, another at z and the third at x on the real axis directly below z (or above z if z happens to be below the real axis). The horizontal side of the triangle has length |x|, the vertical side has length |y|, and the diagonal side has length |z|. Therefore, 

|z|2 = x2 + y2. 

(Note that for real numbers like x, we can drop absolute value when squaring, since |x|2 = x2.) That gives us a formula for |z|, namely, 

|z| = √(x2 + y2) 
The unit circle. Some complex numbers have absolute value 1. Of course, 1 is the absolute value of both 1 and –1, but it's also the absolute value of both i and –i since they're both one unit away from 0 on the imaginary axis. The unit circle is the circle of radius 1 centered at 0. It include all complex numbers of absolute value 1, so it has the equation |z| = 1. 
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A complex number z = x + yi will lie on the unit circle when x2 + y2 = 1. Some examples, besides 1, –1, i, and –1 are ±√2/2 ± i√2/2, where the pluses and minuses can be taken in any order. They are the four points at the intersections of the diagonal lines y = x and y = x with the unit circle. We'll see them later as square roots of i and –i. 

You can find other complex numbers on the unit circle from Pythagorean triples. A Pythagorean triple consists of three whole numbers a, b, and c such that a2 + b2 = c2 If you divide this equation by c2, then you find that (a/c)2 + (b/c)2 = 1. That means that a/c + i b/c is a complex number that lies on the unit circle. The best known Pythagorean triple is 3:4:5. That triple gives us the complex number 3/5 + i 4/5 on the unit circle. Some other Pythagorean triples are 5:12:13, 15:8:17, 7:24:25, 21:20:29, 9:40:41, 35:12:27, and 11:60:61. As you might expect, there are infinitely many of them. (For a little more on Pythagorean triples, see the end of the page at http://aleph0.clarku.edu/~djoyce/java/trig/right.html.) 

The triangle inequality. There's an important property of complex numbers relating addition to absolute value called the triangle inequality. If z and w are any two complex numbers, then 

|z + w| ≤ |z| + |w| 
You can see this from the parallelogram rule for addition. Consider the triangle whose vertices are 0, z, and z + w. One side of the triangle, the one from 0 to z + w has length |z + w|. A second side of the triangle, the one from 0 to z, has length |z|. And the third side of the triangle, the one from z to z + w, is parallel and equal to the line from 0 to w, and therefore has length |w|. Now, in any triangle, any one side is less than or equal to the sum of the other two sides, and, therefore, we have the triangle inequality displayed above. 
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Multiplying complex numbers

Multiplication done algebraically. Complex multiplication is a more difficult operation to understand from either an algebraic or a geometric point of view. Let's do it algebraically first, and let's take specific complex numbers to multiply, say 3 + 2i and 1 + 4i. Each has two terms, so when we multiply them, we'll get four terms: 

(3 + 2i)(1 + 4i) = 3 + 12i + 2i + 8i2. 

Now the 12i + 2i simplifies to 14i, of course. What about the 8i2? Remember we introduced i as an abbreviation for √–1, the square root of –1. In other words, i is something whose square is –1. Thus, 8i2 equals –8. Therefore, the product (3 + 2i)(1 + 4i) equals –5 + 14i. 

If you generalize this example, you'll get the general rule for multiplication 

(x + yi)(u + vi) = (xu – yv) + (xv + yu)i. 
Remember that (xu – yv), the real part of the product, is the product of the real parts minus the product of the imaginary parts, but (xv + yu), the imaginary part of the product, is the sum of the two products of one real part and the other imaginary part. 

Let's look at some special cases of multiplication. 

Multiplying a complex number by a real number. In the above formula for multiplication, if v is zero, then you get a formula for multiplying a complex number x + yi and a real number u together: 

(x + yi) u = xu + yu i. 

In other words, you just multiply both parts of the complex number by the real number. For example, 2 times 3 + i is just 6 + 2i. Geometrically, when you double a complex number, just double the distance from the origin, 0. Similarly, when you multiply a complex number z by 1/2, the result will be half way between 0 and z. You can think of multiplication by 2 as a transformation which stretches the complex plane C by a factor of 2 away from 0; and multiplication by 1/2 as a transformation which squeezes C toward 0. 
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Multiplication and absolute value. Even though we've only done one case for multiplication, it's enough to suggest that the absolute value of zw (i.e., distance from 0 to zw) might be the absolute value of z times the absolute value of w. It was when w was the real number u just above. In fact, this is true in general: 

|zw| = |z| |w| 
The verification of this identity is an exercise in algebra. In order to prove it, we'll prove it's true for the squares so we don't have to deal with square roots. We'll show |zw|2 = |z|2|w|2. Let z be x + yi, and let w be u + vi. Then, according to the formula for multiplication, zw equals (xu – yv) + (xv + yu)i. Recall from the section on absolute values that 

|z|2 = x2 + y2 

Similarly, we have 

|w|2 = u2 + v2 

and, since zw = (xu – yv) + (xv + yu)i, 

|wz|2 = (xu – yv)2 + (xv + yu)2 

So, in order to show |zw|2 = |z|2|w|2, all you have to do is show that 

(xu – yv)2 + (xv + yu)2 = (x2 + y2) (u2 + v2) 

and that's a straightforward exercize in algebra. 

Powers of i. For our next special case of multiplication, consider the various powers of the imaginary unit i. We started with the assumption that i2 = –1. What about i3? It's just i2 times i, and that's –1 times i. Therefore, i3 = –i. That's interesting: the cube of i is its own negation. Next consider i4. That's the square of i2, that is, the square of –1. So i4 = 1. In other words, i is a fourth root of 1. You can show that –i is another fourth root of 1. And since both –1 and 1 are square roots of 1, we now know all four fourth roots of 1, namely, 1, [image: image4.png]


i, –1, and –i. This observation connects to the Fundamental Theorem of Algebra since the equation z4 = 1 is a fourth-degree equation so must have exactly four roots. 

Higher powers of i are easy to find now that we know i4 = 1. For example, i5 is i times i4, and that's just i. You can reduce the power of i by 4 and not change the result. For another example, i11 = i7 = i3 = –i. 

How about negative powers of i? What is the reciprocal of i, that is, i–1? For the same reason that you can subtract 4 from a power of i and not change the result, you can also add 4 to the power of i. That means i–1 = i3 = –i. Thus, the reciprocal of i is –i. Imagine–a number whose reciprocal is its own negation! Of course, it's easy to check that i times –i is 1, so, of course, i and –i are reciprocals. 

Roots of unity. The various roots of 1 are called roots of unity. In general, by the Fundamental Theorem of Algebra, the number of n-th roots of unity is n, since there are n roots of the n-th degree equation zu – 1 = 0. The square roots of unity are 1 and –1. The fourth roots are ±1, ±i, as noted earlier in the section on absolute value. Also, in that section, it was mentioned that ±√2/2 ± i√2/2 were square roots of i and –i, and now with the formula for multiplication, that's easy to verify. Therefore, the eight eight-roots of unity are ±1, ±i, and ±√2/2 ± i√2/2. Notice how these eight roots of unity are equally spaced around the unit circle. 
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We can use geometry to find some other roots of unity, in particular the cube roots and sixth roots of unity. But let's wait a little bit for them. 

Multiplying a complex number by i. In our goal toward finding a geometric interpretation of complex multiplication, let's consider next multiplying an arbitrary complex number z = x + yi by i. 

z i = (x + yi) i = –y + xi. 

Let's interpret this statement geometrically. The point z in C is located x units to the right of the imaginary axis and y units above the real axis. The point z i is located y units to the left, and x units above. What has happened is that multiplying by i has rotated to point z  90° counterclockwise around the origin to the point z i. Stated more briefly, multiplication by i gives a 90° counterclockwise rotation about 0. 

You can analyze what multiplication by –i does in the same way. You'll find that multiplication by –i gives a 90° clockwise rotation about 0. When we don't specify counterclockwise or clockwise when referring to rotations or angles, we'll follow the standard convention that counterclockwise is intended. Then we can say that multiplication by –i gives a –90° rotation about 0, or if you prefer, a 270° rotation about 0. [image: image78.png]
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A geometric interpretation of multiplication. To completely justify what we're about to see, trigonometry is needed, and that is done in an optional section. For now, we'll see the results without the justification. We've seen two special cases of multiplication, one by reals which leads to scaling, the other by i which leads to rotation. The general case is a combination of scaling and rotation. 

Let z and w be points in the complex plane C. Draw the lines from 0 to z, and 0 to w. The lengths of these lines are the absolute values |z| and |w|, respectively. We already know the length of the line from 0 to zw is going to be the absolute value |zw| which equals |z| |w|. (In the diagram, |z| is about 1.6, and |w| is about 2.1, so |zw| should be about 3.4. Note that the unit circle is shaded in.) What we don't know is the direction of the line from 0 to zw. 

The answer is that "angles add". We'll determine the direction of the line from 0 to z by a certain angle, called the argument of z, sometimes denoted arg(z). This is the angle whose vertex is 0, the first side is the positive real axis, and the second side is the line from 0 to z. The other point w has angle arg(w). Then the product zw will have an angle which is the sum of the angles arg(z) + arg(w). (In the diagram, arg(z) is about 20°, and arg(w) is about 45°, so arg(zw) should be about 65°.) 

In summary, we have two equations which determine where zw is located in C: 

|zw| = |z| |w| 

arg(zw) = arg(z) + arg(w) 
Angles and polar coordinates


[image: image7.png]


This section assumes a knowledge of trigonometry. For information on trigonometry, see Dave's Short Trig Course at 

http://aleph0.clarku.edu/~djoyce/java/trig/

. 
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Polar coordinates will help us understand complex numbers geometrically. On the one hand, the usual rectangular coordinates x and y specify a complex number z = x + yi by giving the distance x right and the distance y up. On the other hand, polar coordinates specify the same point z by saying how far r away from the origin 0, and the angle [image: image8.png]


for the line from the origin to the point. We've already called the distance r the absolute value |z| of z, and we saw how the Pythagorean theorem gave relation between it and x and y: 

r = |z| = √(x2 + y2). 

Next, we need to deal with the angle [image: image9.png]


. We'll follow the standard convention for specifying the angle [image: image10.png]


. This convention takes the positive x-axis (our real axis) to be at angle 0°, the positive y-axis (our imaginary axis) at angle 90°, the negative x-axis angle 180°, and the negative y-axis at angle 270°. Also, 360° can be added or subtracted from any angle and the direction is not changes. So, 0°, 360°, 720°, and –360° all refer to the positive x-axis. Similarly, 270° and –90° both refer to the negative y-axis. A 45° angle runs along the line y = x, up to the right. And so forth. 
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A point z can be specified by either pair, the pair of rectangular coordinates, x and y, or the pair of polar coordinates, r, which is |z|, and [image: image12.png]


, which is arg (z). Since either pair determines the point, each pair should determine the other pair. There should be four equations, connecting them, and so there are. The Pythagorean identity was mentioned above, but the others require trigonometry. From the same triangle we used for the Pythagorean theorem, we find the following three relations: 

tan [image: image13.png]


= y/x,   x = r cos [image: image14.png]


, and   y = r sin [image: image15.png]


. 

Now, if we apply these relations to our complex number z = x + yi, then we get an alternate description for z 

	z
	=
	x + iy

	
	=
	r cos [image: image16.png]


+ i r sin [image: image17.png]




	
	=
	r (cos [image: image18.png]


+ i sin [image: image19.png]


)

	
	=
	|z| (cos [image: image20.png]


+ i sin [image: image21.png]


)


Note that the complex number cos [image: image22.png]


 + i sin [image: image23.png]


 has absolute value 1 since cos2[image: image24.png]


 + sin2[image: image25.png]


 equals 1 for any angle [image: image26.png]


. Thus, every complex number z is the product of a real number |z| and a complex number cos [image: image27.png]


 + i sin [image: image28.png]


. 

We're almost to the point where we can prove the last unproved statement of the previous section on multiplication, namely, that arg(zw) = arg(z) + arg(w). As above, we take arg(z) to be [image: image29.png]


, and now let arg(w) be [image: image30.png]


. Then, 

z = |z| (cos [image: image31.png]


+ i sin [image: image32.png]


) 

and 

w = |w| (cos [image: image33.png]


+ i sin [image: image34.png]


) 

We need to show that arg(zw) is [image: image35.png]
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. In other words 

zw = |zw| (cos ([image: image37.png]


 + [image: image38.png]


) + i sin ([image: image39.png]
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)) 

If we use the addition formulas for cosine and sine at one crucial point, we'll have it. Recall from trigonometry these addition formulas: 

cos ([image: image41.png]
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) = cos [image: image43.png]
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sin ([image: image47.png]
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) = cos [image: image49.png]


 sin [image: image50.png]


 + sin [image: image51.png]
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. 


Now we're ready to show arguments add in the product zw. 

	zw
	=
	|z| (cos [image: image53.png]


+ i sin [image: image54.png]


) |w| (cos [image: image55.png]


+ i sin [image: image56.png]


)

	
	=
	|zw| (cos [image: image57.png]


+ i sin [image: image58.png]


) (cos [image: image59.png]


+ i sin [image: image60.png]


)

	
	=
	|zw| ((cos [image: image61.png]
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 – sin [image: image63.png]
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) + i(cos [image: image65.png]
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)) 

	
	=
	|zw| (cos ([image: image69.png]
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) + i sin ([image: image71.png]
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)) 


Thus, arg(zw) is [image: image73.png]


 + [image: image74.png]


, as claimed. 
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Reciprocals, conjugates, and division

We've studied addition, subtraction, and multiplication. Now it's time for division. Just as subtraction can be compounded from addition and negation, division can be compounded from multiplication and reciprocation. So we set ourselves the problem of finding 1/z given z. In other words, given a complex number z = x + yi, find another complex number w = u + vi such that zw = 1. By now, we can do that both algebraically and geometrically. First, algebraically. We'll use the product formula we developed in the section on multiplication. It said 

(x + yi)(u + vi) = (xu – yv) + (xv + yu)i. 

Now, if two complex numbers are equal, then their real parts have to be equal and their imaginary parts have to be equal. In order that zw = 1, we'll need 

(xu – yv) + (xv + yu)i = 1. 

That gives us two equations. The first says that the real parts are equal: 

xu – yv = 1, 

and the second says that the imaginary parts are equal: 

xv + yu = 0. 

Now, in our case, z was given and w was unknown, so in these two equations x and y are given, and u and v are the unknowns to solve for. You can fairly easily solve for u and v in this pair of simultaneous linear equations. When you do, you'll find 

	u =
	x 



x2 + y2
	 and  v =
	–y 



x2 + y2
	.


So, the reciprocal of z = x + yi is the number w = u + vi where u and v have the values just found. In summary, we have the following reciprocation formula: 

	1 



x + yi
	 =  
	x 



x2 + y2
	 + 
	–y 



x2 + y2
	i.
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Reciprocals done geometrically, and complex conjugates. From what we know about the geometry of multiplication, we can determine reciprocals geometrically. If z and w are reciprocals, then zw = 1, so the product of their absolute values is 1, and the sum of their arguments (angles) is 0. 

This means the length of 1/z is the reciprocal of the length of z. For example, if |z| = 2, as in the diagram, then |1/z| = 1/2. It also means the argument for 1/z is the negation of that for z. In the diagram, arg(z) is about 65° while arg(1/z) is about –65°. 

You can see in the diagram another point labelled with a bar over z. That is called the complex conjugate of z. It has the same real component x, but the imaginary component is negated. Complex conjugation negates the imaginary component, so as a transformation of the plane C all points are reflected in the real axis (that is, points above and below the real axis are exchanged). Of course, points on the real axis don't change because the complex conjugate of a real number is itself. 

Complex conjugates give us another way to interpret reciprocals. You can easily check that a complex number z = x + yi times its conjugate x – yi is the square of its absolute value |z|2. 

	z 
	
	

z
	= |z|2


Therefore, 1/z is the conjugate of z divided by the square of its absolute value |z|2. 

	1/z = 
	
	

z
	/ |z|2


In the figure, you can see that 1/|z| and the conjugate of z lie on the same ray from 0, but 1/|z| is only one-fourth the length of the conjugate of z (and |z|2 is 4). 

Incidentally, complex conjugation is an amazingly "transparent" operation. It commutes with all the arithmetic operations: the conjugate of the sum, difference, product, or quotient is the sum, difference, product, or quotient, respectively, of the conjugates. Such an operation is called a field isomorphism. 

Division. Putting together our information about products and reciprocals, we can find formulas for the quotient of one complex number divided by another. First, we have a strictly algebraic formula in terms of real and imaginary parts. 

	x + yi 



u + vi
	= 
	(xu + yv) + (–xv + yu)i 



u2 + v2


Next, we have an expression in complex variables that uses complex conjugation and division by a real number. 

	z/w = z 
	
	

w
	/ |w|2


Both formulations are useful and well worth knowing and understanding. 

Powers. Powers of complex numbers are just special cases of products when the power is a positive whole number. We have already studied the powers of the imaginary unit i and found they cycle in a period of length 4. 

i1 = i, i2 = –1, i3 = –i,, i4 = 1, 
i5 = i, i6 = –1, i7 = –i,, i8 = 1, 
i9 = i, i10 = –1, i11 = –i,, i12 = 1 

and so forth. The reasons were that (1) the absolute value |i| of i was one, so all its powers also have absolute value 1 and, therefore, lie on the unit circle, and (2) the argument arg(i) of i was 90°, so its nth power will have argument n90°, and those angles will repeat in a period of length 4 since 4·90° = 360°, a full circle. 

More generally, you can find zn as the complex number (1) whose absolute value is |z|n, the nth power of the absolute value of z, and (2) whose argument is n times the argument of z. 

In the figure you see a complex number z whose absolute value is about the sixth root of 1/2, that is, |z| = 0.89, and whose argument is 30°. Here, the unit circle is shaded black while outside the unit circle is gray, so z is in the black region. Since |z| is less than one, it's square is at 60° and closer to 0. Each higher power is 30° further along and even closer to 0. The first six powers are displayed, as you can see, as points on a spiral. This spiral is called a geometric or exponential sprial. 
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Roots. Note that in the last example, z6 is on the negative real axis at about -1/2. That means that z is just about equal to one of the sixth roots of -1/2. There are, in fact, six sixth roots of any complex number. Let z be a complex number, and w any of its sixth roots. Since z6 = w, it follows that (1) the absolute value of |z| is |w|6, and (2) arg(z) is 6 arg(w). Actually, the second statement isn't quite right since 6 arg(w) could be any multiple of 360° more than arg(z). 

For example, take z to be -1/2, the green dot in the figure to the right. Then |z| is 1/2, and arg(z) is 180°. Let w be a sixth root of z. Then (1) |w| is |z|1/6 which is about 0.89. Also, (2) the argument of z [image: image82.png]122 = x%4 2
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is arg(z) = 180°. But the same angle could be named by any of 

180°, 540°, 900°, 1260°, 1610°, or 1970°. 

If we take 1/6 of each of these angles, then we'll have the possible arguments for w: 

30°, 90°, 150°, 210°, 270°, or 330°. 

Since each of the angles for z differs by 360°, therefore each of the possible angles for w will differ by 60°. These six sixth roots of -1/2 are displayed in the figure as blue dots. 

More roots of unity. Recall that an "nth root of unity" is just another name for an nth root of one. The fourth roots are ±1, ±i, as noted earlier in the section on absolute value. We also saw that the eight 8th roots of unity when we looked at multiplication were ±1, ±i, and ±√2/2 ± i√2/2. 

Let's consider now the sixth roots of unity. They will be placed around the circle at 60° intervals. Two of them, of course, are ±1. Let w be the one with argument 60°. The triangle with vertices at 0, 1, and w is an equilateral triangle, so it is easy to determine the coordinates of w. The x-coordinate is 1/2, and the y-coordinate is √3/2. Therefore, w is (1 + i√3)/2. The remaining sixth roots are reflections of w in the real and imaginary axes. In summary, the six sixth roots of unity are ±1, and (±1 ± i√3)/2 (where + and – can be taken in any order). 

Now some of these sixth roots are lower roots of unity as well. The number –1 is a square root of unity, (–1 ± i√3)/2 are cube roots of unity, and 1 itself counts as a cube root, a square root, and a "first" root (anything is a first root of itself). But the remaining two sixth roots, namely, (1 ± i√3)/2, are sixth roots, but not any lower roots of unity. Such roots are called primitive, so (1 ± i√3)/2 are the two primitive sixth roots of unity. 

It's fun to find roots of unity, but we've found most of the easy ones already. 

